TECNOLOGÍA DE ASISTENCIA: EXOESQUELETOS ROBÓTICOS EN REHABILITACIÓN

José Iván Alfonso Mantilla, Jaime Martínez Santa

Resumen


Introducción: la robótica es la ciencia que combina la mecánica y electrónica; tiene como fin la creación de sistemas robóticos. Adicionalmente, esta área de conocimiento se especializa en la creación de tecnologías de asistencia para pacientes con enfermedades neurológicas como lesiones espinales, accidentes cerebrovasculares y enfermedades degenerativas de la médula espinal, estos sistemas son conocidos como exoesqueletos robóticos los cuales son sistemas mecatrónicos usados por una persona de tal manera que la interfaz física permite una transferencia directa de energía mecánica e intercambio de información. Objetivo: realizar una revisión de literatura acerca de los tipos de exoesqueletos robóticos y los beneficios de la intervención realizados con los mismos en pacientes con lesiones neurológicas. Materiales y Método: se realizó una revisión de la literatura en las siguientes bases de datos como: Ebsco, Pedro, Hinari, Elsevier, Science Direct, Springer Medline. Tuvo como criterios de inclusión estudios entre el 2000 y el 2016, con los siguientes términos DeCS: Exoskeleton device, rehabilitation, robotics, gait el idioma de los artículos consultados podía ser en español, inglés o portugués. Resultados: existen diferentes tipos de exoesqueletos robóticos tanto de miembros inferiores y superiores, estos utilizan una interfaz entre el sujeto para obtener una interacción mecánica, en enfermedades neurológicas como lesiones espinales y accidentes cerebrovasculares se ha reportado el aumento de variables cinéticas y cinemáticas en el patrón de marcha así como el aumento funcionalidad en mano. Conclusiones: los exoesqueletos robóticos deben ser el futuro de intervenciones en fisioterapia debido a su alto nivel de confiabilidad

Palabras clave


Dispositivo exoesqueleto; rehabilitación; robótica; marcha

Texto completo:

PDF

Referencias


Aach, M., Cruciger, O., Sczesny-Kaiser, M., Hoffken, O., Meindl, R., Tegenthoff, M., et al. (2014). Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J, 14(12), 2847-2853.

Agrawal, S. K., Banala, S. K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., & Hsu, W. L. (2007). Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 15(3), 410-420.

Alavi, N., Herrnstadt, G., Randhawa, B. K., Boyd, L. A., & Menon, C. (2015). Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification. Conf Proc IEEE Eng Med Biol Soc, 2015, 4643-4646.

Asselin, P. K., Avedissian, M., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2016). Training Persons with Spinal Cord Injury to Ambulate Using a Powered Exoskeleton. J Vis Exp(112).

Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J. C., Francisco, G. E., Pons, J. L., & Contreras-Vidal, J. L. (2015). The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil, 12, 54.

Buesing, C., Fisch, G., O'Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C. K., et al. (2015). Effects of a wearable exoskeleton stride management assist system (SMA(R)) on spatiotemporal gait characteristics in individuals after stroke: a randomi zed controlled trial. J Neuroeng Rehabil, 12, 69.

Chen, G., Chan, C. K., Guo, Z., & Yu, H. (2013). A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng, 41(4-5), 343-363.

Cooper, R. A., Dicianno, B. E., Brewer, B., LoPresti, E., Ding, D., Simpson, R., et al. (2008). A perspective on intelligent devices and environments in medical rehabilitation. Med Eng Phys, 30(10), 1387-1398.

Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 91(11), 911-921.

Evans, N., Hartigan, C., Kandilakis, C., Pharo, E., & Clesson, I. (2015). Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 122-132.

Ferrigno, G., Baroni, G., Casolo, F., De Momi, E., Gini, G., Matteucci, M., & Pedrocchi, A. (2011). Medical robotics. IEEE Pulse, 2(3), 55-61.

Ferris, P. (2010). Robotic lower limb orthosis: goals obstacles and current research. Paper presented at the The 34 th Annual Meerting of the American Sociaty of Biomechanics, Symposia: Robotic Lower Limb Ortheses and Prostheses.

Fisahn, C., Aach, M., Jansen, O., Moisi, M., Mayadev, A., Pagarigan, K. T., et al. (2016). The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global Spine J, 6(8), 822-841.

Fleischer, C., Wege, A., Kondak, K., & Hommel, G. (2006). Application of EMG signals for controlling exoskeleton robots. Biomed Tech (Berl), 51(5-6), 314-319.

Francis, P., & Winfield, H. N. (2006). Medical robotics: the impact on perioperative nursing practice. Urol Nurs, 26(2), 99-104, 107-108.

French, J. A., Rose, C. G., & O'Malley, M. K. (2014). System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation. Proc ASME Dyn Syst Control Conf, 2014.

Gillesen, J. C., Barakova, E. I., Huskens, B. E., & Feijs, L. M. (2011). From training to robot behavior: towards custom scenarios for robotics in training programs for ASD. IEEE Int Conf Rehabil Robot, 2011, 5975381.

Hornby, T. G., Kinnaird, C. R., Holleran, C. L., Rafferty, M. R., Rodriguez, K. S., & Cain, J. B. (2012). Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury. Phys Ther, 92(10), 1278-1291.

Jimenez-Fabian, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys, 34(4), 397-408.

Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010a). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech, 43(2), 203-209.

Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010b). Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking. J Biomech, 43(7), 1401-1407.

Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010c). Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. J Neuroeng Rehabil, 7, 33.

Koller, J. R., Jacobs, D. A., Ferris, D. P., & Remy, C. D. (2015). Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. J Neuroeng Rehabil, 12, 97.

Kozlowski, A. J., Bryce, T. N., & Dijkers, M. P. (2015). Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil, 21(2), 110-121.

Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 15(3), 327-335.

Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil Rehabil Assist Technol, 11(7), 535-547.

Lewis, C. L., & Ferris, D. P. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. J Biomech, 44(5), 789-793.

Li, Z., Wang, B., Sun, F., Yang, C., Xie, Q., & Zhang, W. (2014). sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform, 18(3), 1043-1050.

Lim, H. O., & Takanishi, A. (2007). Biped walking robots created at Waseda University: WL and WABIAN family. Philos Trans A Math Phys Eng Sci, 365(1850), 49-64.

Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys, 34(3), 261-268.

Louie, D. R., & Eng, J. J. (2016). Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil, 13(1), 53.

Masiero, S., Carraro, E., Ferraro, C., Gallina, P., Rossi, A., & Rosati, G. (2009). Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J Rehabil Med, 41(12), 981-985.

Miller, L. E., Zimmermann, A. K., & Herbert, W. G. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl), 9, 455-466.

Olaya, A. F. R. (2009). Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor. Universidad Carlos III de Madrid.

Pehlivan, A. U., Rose, C., & O'Malley, M. K. (2013). System characterization of RiceWrist-S: a forearm-wrist exoskeleton for upper extremity rehabilitation. IEEE Int Conf Rehabil Robot, 2013, 6650462.

Popovic, D. B., & Popovic, M. B. (2006). Hybrid assistive systems for rehabilitation: lessons learned from functional electrical therapy in hemiplegics. Conf Proc IEEE Eng Med Biol Soc, 1, 2146-2149.

Reinkensmeyer, D. J., Akoner, O., Ferris, D. P., & Gordon, K. E. (2009). Slacking by the human motor system: computational models and implications for robotic orthoses. Conf Proc IEEE Eng Med Biol Soc, 2009, 2129-2132.

Renjewski, D., & Seyfarth, A. (2012). Robots in human biomechanics—a study on ankle push-off in walking. Bioinspir Biomim, 7(3), 036005.

Rocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Moreno, J. C., & Pons, J. L. (2007). Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng, 15(3), 367-378.

Sawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoske le tons. J Exp Biol, 211(Pt 9), 1402-1413.

Sawicki, G. S., & Ferris, D. P. (2009). Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol, 212(Pt 1), 21-31.

Sczesny-Kaiser, M., Hoffken, O., Aach, M., Cruciger, O., Grasmucke, D., Meindl, R.,... Tegenthoff, M. (2015). HAL(R) exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil, 12, 68.

Sylos-Labini, F., La Scaleia, V., d'Avella, A., Pisotta, I., Tamburella, F., Scivoletto, G., ... Ivanenko, Y. P. (2014). EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci, 8, 423.

Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., & Yang, Z. (2014). An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors (Basel), 14(4), 6677-6694.

van den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. Biomed Eng Online, 2, 17.

Yakub, F., Md Khudzari, A. Z., & Mori, Y. (2014). Recent trends for practical rehabilitation robotics, current challenges and the future. Int J Rehabil Res, 37(1), 9-21.

Yang, A., Asselin, P., Knezevic, S., Kornfeld, S., & Spungen, A. M. (2015). Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 21(2), 100-109.

Yoshimoto, T., Shimizu, I., & Hiroi, Y. (2016). Sustained effects of once-a-week gait training with hybrid assistive limb for rehabilitation in chronic stroke: case study. J Phys Ther Sci, 28(9), 2684-2687.

Yoshimoto, T., Shimizu, I., Hiroi, Y., Kawaki, M., Sato, D., & Nagasawa, M. (2015). Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res, 38(4), 338-343.

Zhang, F., Fu, Y., Zhang, Q., & Wang, S. (2015). Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Biomed Mater Eng, 26 Suppl 1, S665-672.


Métricas de artículo

Vistas de resumen
180




Cargando métricas ...

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2017 Corporación Universitaria Iberoamericana

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.


Bogotá, Calle 67 N 5-27.
Servicio al Estudiante (1) 5897550.
Horario: Lunes a viernes de 8 a.m. a 7 p.m.
Conmutador (1) 3489292.
Horario: Lunes a viernes de 8 a.m. a 6 p.m. y sábados de 8 a.m. a 1 p.m.
Neiva, Calle 14 N 8B-65. Teléfonos (8) 875 8103 y 875 9009.
servicioalestudiante@iberoamericana.edu.co
Bogotá, Colombia, Sur América

Carácter académico: Institución Universitaria
P.J. No. 0428 del 28 de Enero de 1982 - MEN
VIGILADA MINEDUCACIÓN

Sistema OJS - Metabiblioteca |